HIGH-DYNAMIC-RANGE PHOTOGRAPHY + TONE MAPPING II

Wojciech Jarosz wojciech.k.jarosz@dartmouth.edu

CS 89.15/189.5, Fall 2015

Last time

- The dynamic range challenge **Applications of HDR photography** Capturing HDR images Merging bracketed exposures Tone mapping - global operators
- local operators

Examples Inside is too dark Outside is too bright

Sun overexposed Foreground too dark

With HDR & tone mapping

HDR today

HDR Off

HDR On

Application: Motion blur

Simulated Motion

HDR LDR [Debevec et al. 97]

Simulated Motion Blur

Application: Inserting Synthetic Objects

Application: Inserting Synthetic Objects

Problem 1: Record the information

The range of illumination levels that we encounter is 10-12 orders of magnitude Real scenes 10^{-6} 10^{6}

Film/sensors can record 2-3 orders of magnitude 10^{3}

Film/sensor

Sequentially measure all segments of the range

Sequentially measure all segments of the range

Sequentially measure all segments of the range

Sequentially measure all segments of the range

Sequentially measure all segments of the range

slide by Frédo Durand After a

Sequentially measure all segments of the range

slide by Frédo Durand After a

Problem 2: Display the information

Match limited contrast of the medium while preserving details: the tone mapping problem high dynamic range 10-6 10^{6} Real world:

slide by Frédo Durand

After a

CS 89/189: Computational Photography, Fall 2015

 10^{6}

"Wielki Staw Polski"

"Wielki Staw Polski"

Global tone mapping operators

- Gamma compression, applied independently on R,G,B - output = $e \cdot input^{\gamma} (\gamma = 0.5 here)$
- Colors become washed-out.
 - In addition to the gamma transform during **RAW-to-JPEG** conversion

CS 89/189: Computational Photography, Fall 2015

- Why?

Global tone mapping operators

Gamma compression on intensity only Colors are OK, but details (high-frequency intensity) not

The importance of local contrast

straight print

Ansel Adams, Clearing Winter Storm, 1942

toned print

Marc Levoy уd slide Ite

Oppenheim 1968, Chiu et al. 1993

Reduce contrast of low-frequencies, preserve high frequencies

The halo nightmare

For strong edges; because they contain high frequency

Gaussian vs. **Bilateral filter** $\sigma_s = 2$

Input

 $\sigma_s = 18$

 $\sigma_s = 6$

 $\sigma_r = 0.1$

 $\sigma_r = 0.25$

 $\sigma_r = \infty$ (Gaussian blur)

Durand and Dorsey 2002

Don't blur across edges, decompose using bilateral filter

Today

Recap of bilateral tone mapping Variance-optimized weights for HDR merging HDR merging/tone mapping in practice

Input HDR image

Contrast too high!

Ion

Input HDR image

intensity = 0.4R + 0.7G + 0.01B

G'=G/intensity B'=B/intensity

R'=R/intensity important to use ratios (makes it luminance invariant)

Input HDR image

Bilateral Filter in log

Spatial sigma: 2 to 5% image size Range sigma: 0.4 (in log 10)

Input HDR image

Bilateral Filter in log

Detail = log intensity - large scale (residual)

Input HDR image

Bilateral Filter in log

Input HDR image

Bilateral Filter in log

Input HDR image

Bilateral Filter in log

Log domain

Very important to work in the log domain Recall: humans are sensitive to multiplicative contrast With log domain, our notion of "strong edge" always corresponds to the same contrast

Scale decomposition in log domain

- $inLog = log_{10}(intensity)$
- inLogLarge = bilateralFilter(inLog)
- inLogDetail = inLog inLogLarge
- hence:
- inLog = inLogDetail + inLogLarge, or
- intensity = 10^{inLogDetail} * 10^{inLogLarge}
- Now manipulate large-scale and detail separately

Contrast reduction in log domain

- outLog = inLogDetail + k*(inLogLarge max(inLogLarge))
- Normalize so that the biggest value is 0 in log
- Set target large-scale contrast (e.g. targetRange = log_{10} (100))
- i.e. in **linear** output, we want 1:100 contrast for large scale
- Compute range of input's large-scale layer:
- largeRange = max(inLogLarge) min(inLogLarge)
- Scale factor k = targetRange / largeRange

Contrast reduction in log domain

- outLog = detailAmp*inLogDetail + k*(inLogLarge max(inLogLarge))
 - Normalize so that the biggest value is 0 in log
 - Set target large-scale contrast (e.g. targetRange = $\log_{10}(100)$)
 - i.e. in **linear** output, we want 1:100 contrast for large scale
 - Compute range of input's large-scale layer:
 - largeRange = max(inLogLarge) min(inLogLarge)
 - Scale factor k = targetRange / largeRange
 - **Optional:** amplify detail by detailAmp

Final output

- outIntensity = 10^{outLog}
- outR=outIntensity * R'
- outG=outIntensity * G'
- outB=outIntensity * B'

outLog = detailAmp*inLogDetail + k*(inLogLarge - max(inLogLarge))

Recall that R',G',B' is the intensity-normalized RGB color

After a slide by Frédo Durand

What matters

- Spatial sigma: not very important Range sigma: quite important Use of the log domain for range: critical
- Because HDR and because perception sensitive to multiplicative contrast

Speed

Direct bilateral filtering is slow (minutes)

Fast algorithm: bilateral grid

- http://groups.csail.mit.edu/graphics/bilagrid/
- http://people.csail.mit.edu/sparis/publi/2009/ijcv/
 Paris_09_Fast_Approximation.pdf
- http://graphics.stanford.edu/papers/gkdtrees/

Questions?

Related tools

- Photoshop "Local adaptation"
- Lightroom "Fill Light"
- or "Shadows" (but with Local Laplacian Filter)
- Photomatix "Details Enhancer"

HDR vs. Tone mapping vs. Developing

- Tone mapping is not something new or unique to HDR
- dodge-burn, dark room development, RAW processing
- Your camera does tone mapping even if you don't do HDR
- Film & digital SLRs have more dynamic range than display
- Enhance/preserve details, map larger range to smaller
- HDR tone mapping and RAW processing (e.g. Lightroom Develop module) are doing fundamentally similar things

"Abandoned Ship at Point Reyes"

"Abandoned Ship at Point Reyes"

la sidillar

Up to a point

Optimal Weights

Problem setup

They have different noise characteristics How can we combine them optimally?

We may have multiple valid observations for a given pixel

Simple cases

They have the same noise

- Just take the average: see assignment 3
- Noise reduced by sqrt(N)

If one is a lot more noisy?

- Probably focus on the other one
- reduction

- But if we only use the less noisy one, we don't get any noise

- There has to be a way to use the second one at least a little bit

Simple case

Two observations x & y of the same quantity

- with given variances $\sigma^2[x] = \sigma^2[y]$
- Compute estimate as ax + (1-a)y
- What is the optimal a?

Minimize variance

Variance of the combination:

$$\sigma^2[ax + (1-a)y] =$$

To minimize: set derivative to zero $2a\sigma^{2}[x] - 2(1 - a)\sigma^{2}[y] = 0$ $a\left(\sigma^2[x] + \sigma^2[y]\right) = \sigma^2[y]$ \mathcal{A} $= \overline{\sigma^2[x] + \sigma^2[y]]}$

CS 89/189: Computational Photography, Fall 2015

$= a^2 \sigma^2 [x] + (1 - a)^2 \sigma^2 [y]$

Optimal combination

$$\frac{\sigma^2[y]}{\sigma^2[x] + \sigma^2[y]} x + \frac{\sigma^2[x]}{\sigma^2[x] + \sigma^2[y]} y$$

re-arrange:

$$\frac{\sigma^2[x]\sigma^2[y]}{\sigma^2[x] + \sigma^2[y]}$$

normalization term

The optimal combination should scale estimators according to the inverse of their variance

Verify for same variance

CS 89/189: Computational Photography, Fall 2015

slide by Frédo Durand σ After

General formula

Weight each estimator by the inverse variance

Optimal HDR

Recall: Assembling HDR (linear case)

- Figure out scale factor between images
- from exposure data, or
- by looking at ratios $I_i(x,y)/I_i(x,y)$ (only when both are good) Compute weight map w_i for each image
- binary so far
- Reconstruct full image using weighted combination

$$out(x, y) = \frac{1}{\sum w_i(x, y)}$$

 $\frac{1}{1} \sum w_i(x,y) \frac{1}{1} I_i(x,y)$

Pixel noise and variance

Recall: noise is characterized by its variance

- i.e. each pixel value comes from a true value plus some noise added

We can calibrate this noise by taking multiple pen and paper

CS 89/189: Computational Photography, Fall 2015

exposures, or we can derive variance equations using

Sources of noise

Photon noise

- variance proportional to signal
- dominates for dark pixels Read noise
- constant variance
- dominates for dark pixels
- For a pixel value x: $\sigma^2[x] \approx ax + \sigma_{read}^2$

- where a and σ^2_{read} depend on the camera and ISO

Optimal weights Recall irradiance formula: $I_i(x, y) = clip(k_i \cdot L(x, y) + n)$ and HDR merging formula: $out(x,y) = \frac{1}{\sum w_i(x,y)}$ 1/k amplifies signal and noise: replace I by irradiance

$$\frac{1}{y}\sum w_i(x,y)\frac{1}{k_i}I_i(x,y)$$

 $\sigma^2 \left[\frac{1}{k_i} I_i(x, y) \right] = \frac{1}{k_i^2} \left[a I_i(x, y) + \sigma_{read}^2 \right]$

 $\sigma^2 \left[\frac{1}{k_i} I_i(x, y) \right] = \frac{1}{k_i^2} \left[ak_i L(x, y) + \sigma_{read}^2 \right]$

slide by Frédo Durand After

Variance of one scaled image

$$\sigma^{2}\left[\frac{1}{k_{i}}I_{i}(x,y)\right] = \frac{1}{k_{i}^{2}}\left[aI_{i}(x,y) + \sigma_{read}^{2}\right]$$
$$\sigma^{2}\left[\frac{1}{k_{i}}I_{i}(x,y)\right] = \frac{1}{k_{i}^{2}}\left[ak_{i}L(x,y) + \sigma_{read}^{2}\right]$$

$$\sigma^{2}\left[\frac{1}{k_{i}}I_{i}(x,y)\right] = \frac{a}{k_{i}}L(x,y) + \frac{1}{k_{i}^{2}}\sigma^{2}_{read}$$

If we only look at photon noise, mostly proportional to scale factor Ideally, should all be calibrated Note that we ignored ISO variations

Improved weight maps

Old formula: $out(x, y) = \frac{1}{\sum w_i}$ Variance per pixel per ima replace w_i by w_i'

- still use w_i to reject dark and bright pixels
- but also weight by inverse variance

$$w'_i(x,y) = w_i(x,y) / \frac{a}{k_i} L(x,y)$$

$$\frac{1}{i(x,y)} \sum w_i(x,y) \frac{1}{k_i} I_i(x,y)$$
$$ge: \sigma^2[\frac{1}{k_i} I_i(x,y)] \approx \frac{a}{k_i} L(x,y)$$

Improved weight maps

- New formula: $out(x,y) = \frac{1}{\sum w'_i(x,y)} \sum w'_i(x,y) \frac{1}{k_i} I_i(x,y)$ with $w'_i(x,y) = w_i(x,y) / \frac{a}{k_i} L(x,y)$
- the two k_i in the main sum cancel each other
- main sum and the normalization. Get rid of them.

$$out(x, y) = \frac{1}{\sum w_i(x, y)}$$

CS 89/189: Computational Photography, Fall 2015

- a and L(x,y) are constant per pixel and present both in the

 $\overline{y}_{k_i} \sum w_i(x,y) I_i(x,y)$

New formula

$$out(x, y) = \frac{1}{\sum w_i(x, y)}$$

exposure are weighted the same. between a pair of exposures

- Would be different with read noise
- ki has disappeared from the main sum. The images are not really rescaled to scene radiant power
- But they indirectly are because of the normalization
- Recall that ki and 1/ki used to both appear

 $\overline{(y)k_i} \sum w_i(x,y) I_i(x,y)$

- The radiant power reaching the pixel has disappeared. All pixels of a given
- This is because the relative photon noise changes similarly for all pixels

After a slide by Frédo Durand

Naive weights

Weighted by 1/ki

References

http://www.macs.hw.ac.uk/bmvc2006/papers/372.pdf http://people.csail.mit.edu/hasinoff/hdrnoise/

- full noise model
- exploit ISO
- Also optimizes the set of exposures

HDR file formats

Storing/Encoding HDR images

Most formats are lossless Portable float map (.*PFM*):

- straight dump of 32-bit floating-point pixel values
- fwrite(buffer, 3 * sizeof(float), buffer.size(), f);
- quick and dirty, common in research
- Radiance image (.PIC, .HDR):
- 8 bits per r,g,b as usual, plus 8 bits of shared exponent (rgbe)
- Introduced by Greg Ward for Radiance (light simulation)

Float-point TIFF (.*TIFF*):

- log encoded 24- or 32-bit values
- OpenEXR (.*EXR*):
 - by Industrial Light & Magic, also standard in graphics hardware
 - 16- or 32-bit floating-point per channel
 - popular in movie industry, not as much in photography
 - Adobe Digital NeGative (.DNG)
 - Specific for RAW files, intended to
 - avoid lock-in to undocumented, proprietary formats

HDR formats

- Summary of all HDR encoding formats (Greg Ward):
- Greg's notes:
- http://www.openexr.com/
- High Dynamic Range Video Encoding (MPI)
- http://www.mpi-sb.mpg.de/resources/hdrvideo/

- http://www.anyhere.com/gward/hdrenc/hdr_encodings.html

- http://www.anyhere.com/gward/pickup/CIC13course.pdf

CS 89/189: Computational Photography, Fall 2015

72
HDR photography advice

"Good" vs "Bad" HDR/tone mapping

- Generally avoid:
- halos
- excessive noise
- black clouds
- HDR on people or out-of-focus regions

Not all images require HDR tone mapping!

better if you can't tell it's being used

My opinion: HDR tone mapping is like special effects, it's

"Good" vs "Bad" HDR/tone mapping

How to take your own HDR photos

Keep in mind...

photo interesting

Do as much as possible "in-camera"

Shoot in the right light

- golden hour

HDR + tone mapping/processing won't make a boring

- Learn composition (rule of thirds, line, form, texture, etc)

"Kiliçlar Valley"

[Wojciech Jarosz 2012]

"Kiliçlar Valley"

[Wojciech Jarosz 2012]

Use the histogram

What's happening in this photo?

Polarizing Filter

Polarization

Without Polarizer

With Polarizing Filter

Polarization

Without Polarizer

With Polarizing Filter

Effect of Polarization

Effect of Polarization

Exposure Bracketing

- I typically:
- Use aperture for desired depth of field
- Use lowest possible ISO (reduce noise)
- Control exposure with shutter speed
- Use a tripod **and** a remote trigger (mirror lock-up)

"Lake Bled"

[Wojciech Jarosz 2013]

"La Jolla Hospitals Reef"

[Wojciech Jarosz 2015]

Recap

- High dynamic range (HDR) imaging is useful, and a new aesthetic - but is not necessary in all photographic situations
- Low dynamic range (LDR) tone mapping methods can also be applied to HDR scenes
- but reducing very HDR scenes to 8 bits for JPEG using only global methods is hard
- Local methods reduce large-scale luminance changes (across the image) while preserving local contrast (across edges)
- use edge-preserving filters to avoid halos

HDR practice

Slide credits

Frédo Durand

Marc Levoy

