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HDR merged and tone mapped L el EEIR -[Wcsjci—ech Jarosz]
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I Last time

The dynamic range challenge
Applications of HDR photography
Capturing HDR images

Merging bracketed exposures

Tone mapping
- global operators

- local operators
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Inside is too dark

ExampleS Outside is too bright

Sun overexposed
Foreground too dark

i o0

After a slide by Frédo Durand




[Wojciech Jarosz]
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HDR today

HDR Off HDR On




Application: Motion blur

Simulated Motion Simulated Motion Blur Actual Motion blur

[Debeveclet‘al. Q7] [Debevecet al. 97]
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IAppIication: Inserting Synthetic Objects

[Debevec 98]
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IAppIication: Inserting Synthetic Objects
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I Problem 1: Record the information

The range of illumination levels that we encounter
is 10-12 orders of magnitude

106 Real scenes 106
I
- I
I

Film/sensors can record 2-3 orders of magnitude
100 103

[ I R

Film/sensor
CS 89/189: Computational Photography, Fall 2015 10
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I Multiple exposure photography

Sequentially measure all segments of the range

106 high dynamic range 106
Real world:
B
10° 106
Picture: ‘ ‘ ‘ L | ‘ ‘ ‘ ‘ ‘ ‘ ‘
|

low contrast

After a slide by Frédo Durand
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I Multiple exposure photography

Sequentially measure all segments of the range

106 high dynamic range 100
Real world:
EE
106 100
Picture: ‘ ‘ ‘ | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
il
low contrast
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After a slide by Frédo Durand




I Multiple exposure photography

Sequentially measure all segments of the range

106 high dynamic range 106
Real world:
EE
106 100
Picture: ‘ ‘ ‘ ‘ j ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
iR
low contrast

After a slide by Frédo Durand
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I Multiple exposure photography

Sequentially measure all segments of the range

106 high dynamic range 106

Real world:

10° 106
Picture: ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

LR
low contrast

After a slide by Frédo Durand
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I Multiple exposure photography

Sequentially measure all segments of the range

106 high dynamic range 106

Real world:

106 100
Picture: ‘ ‘ ‘ || ‘ | ‘ ‘ ‘ ‘ ‘ ‘ ‘
|
low contrast

After a slide by Frédo Durand
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I Multiple exposure photography

Sequentially measure all segments of the range

106 high dynamic range 106

Real world:

106 | | 106
Picture: ‘ ‘ ‘ | | | | ‘ ‘ ‘ ‘ ‘ ‘
|
low contrast

After a slide by Frédo Durand
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I Problem 2: Display the information

Match limited contrast of the medium while

preserving details: the tone mapping problem

high dynamic range

10°¢ 10°

Real world:
.

109 10°
Picture/display: T
I

low contrast

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015
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“"Wielki Staw Polski” _,[ijciech Jarosz 2011]


http://photoblog.wojciechjarosz.com/photo/505

“Wielki Staw Polski” [Wojciech Jarosz 2011]


http://photoblog.wojciechjarosz.com/photo/505

I Global tone mapping operators

Gamma compression, applied independently on R,G,B
- output = e - input¥ (y = 0.5 here)

Colors become washed-out.

Gamma

~

- Why? [ In addition to the
gamma transform during
RAW-t0-JPEG conversion

B AR
S SR

gy
O

After a slide by F. Durand and M. Levoy
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I Global tone mapping operators

Gamma compression on intensity only
Colors are OK, but details (high-frequency intensity) not

Gamma on intensity

Intensity

' After a slide by Frédo Durand
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IThe importance of local contrast

Edward H. Adelson



toned print

straight print

S s
s \s -
» \..\v. -‘\

“

Ansel Adams, Clearing Winter Storm, 1942
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I Oppenheim 1968, Chiu et al. 1993

Reduce contrast of low-frequencies, preserve high frequencies

Low-fregq,. Reduce low frequency

—

-
L3
3 .. " —

-\a’*" .
- - .
oo
’ﬁ '

' After a slide by Frédo Durand
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IThe halo nightmare

For strong edges; because they contain high frequency

Low-fregq,. Reduce low frequency

' After a slide by Frédo Durand
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Gaussian vs.
Bilateral filter .

0,= o0

(Gaussian blur)


http://people.csail.mit.edu/sparis/bf_course/slides/03_definition_bf.pdf

I Durand and Dorsey 2002

Don’t blur across edges, decompo se usmg bllateral filter
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After a slide by Frédo Durand
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I Today

Recap of bilateral tone mapping
Variance-optimized weights for HDR merging

HDR merging/tone mapping in practice

CS 89/189: Computational Photography, Fall 2015
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¥ Contrast reduction

Input HDR 1mage

—

Contrast
too high!

After a slide by Frédo Durand
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} Contrast reduction

Input HDR 1mage

¥ intensity
= (0.4R+0.7G+0.01B

R’=R/intensity ~ important to use ratios
G’=G/intensity  (makes 1t luminance
B’=B/intensity  invariant)

After a slide by Frédo Durand
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§ Contrast reduction

Large scale

Bilateral
Filter

in log

Spatial sigma: 2 to 5% image size
Range sigma: 0.4 (in log 10)

After a slide by Frédo Durand
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} Contrast reduction

Large scale

. |

" Bilateral | | Detail
Filter ——

in log

Detail = log intensity - large scale
(residual)

After a slide by Frédo Durand
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} Contrast reduction

Large scale

Bilateral ©  Detail _ 5
Filter e

in log

After a slide by Frédo Durand

Reduce
contrast

Large scale




I Contrast reduction

Large scale Large scale
Reduce
contrast i ;
Bilateral © | Detail Detail
. L —— e
Filter T Preserve! [Ss
in log -

After a slide by Frédo Durand




§ Contrast reduction
'

Large scale
Reduce

i contrast

Bilateral = Detail
Filter Sy "VJ Preserve!

in log

After a slide by Frédo Durand




I Log domain
Very important to work in the log domain

Recall: humans are sensitive to multiplicative contrast

With log domain, our notion of “strong edge”
always corresponds to the same contrast

After a slide by Frédo Durand
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f Scale decomposition in log domain

inLog = log1o(intensity)

inLoglLarge = bilateralFilter(inLog)
inLogDetail = inLog - inLoglLarge
hence:

- inLog = inLogDetail + inLoglLarge, or

) intensity — 10inLogDetai\ * ']OinLogLarge

After a slide by Frédo Durand

Now manipulate large-scale and detail separately

CS 89/189: Computational Photography, Fall 2015 38



} Contrast reduction in log domain

outLog = inLogDetail + k*(inLogLarge - max(inLoglLarge))

Normalize so that the biggest value is 0 in log

Set target large-scale contrast (e.g. targetRange = log,,(100))
- i.e.in linear output, we want 1:100 contrast for large scale
Compute range of input’s large-scale layer:

- largeRange = max(inLoglLarge) - min(inLoglLarge)

Scale factor k = targetRange / largeRange

After a slide by Frédo Durand
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} Contrast reduction in log domain

outLog = detail Amp*inLogDetail + k*(inLoglLarge - max(inLogLarge))

Normalize so that the biggest value is 0 in log

Set target large-scale contrast (e.g. targetRange = log,,(100))
- i.e.in linear output, we want 1:100 contrast for large scale
Compute range of input’s large-scale layer:

- largeRange = max(inLoglLarge) - min(inLoglLarge)

Scale factor k = targetRange / largeRange

After a slide by Frédo Durand

Optional: amplity detail by detail Amp

CS 89/189: Computational Photography, Fall 2015 40



I Final output

outLog = detail Amp*inLogDetail + k*(inLoglLarge - max(inLogLarge))

outintensity = 10Q°uteg

Recall that R',G’,B’ is the intensity-normalized RGB color
- outR=outlntensity * R’
- outG=outIntensity * G’

- outB=outIntensity * B’

After a slide by Frédo Durand
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After a slide by Frédo Durand




I What matters

Spatial sigma: not very important
Range sigma: quite important
Use of the log domain for range: critical

- Because HDR and because perception sensitive to
multiplicative contrast

After a slide by Frédo Durand
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) Speed

Direct bilateral filtering is slow (minutes)

Fast algorithm: bilateral grid
- http://groups.csail.mit.edu/graphics/bilagrid/

- http://people.csail.mit.edu/sparis/publi/2009/ijcv/
Paris_09_Fast_Approximation.pdf

- http://graphics.stantord.edu/papers/gkdtrees/

After a slide by Frédo Durand
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http://people.csail.mit.edu/sparis/publi/2009/ijcv/Paris_09_Fast_Approximation.pdf
http://graphics.stanford.edu/papers/gkdtrees/

¥ Questions?

CS 89/189: Computational Photography, Fall 2015
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Threshold:

H
Method: ' Local Adaptation
3
Radius: 16 px ( Cancel
44
o ( Load... )
( save.. )
0.50 -
w
= i | m

Photoshop “Local adaptation”

Lightroom “Fill Light”

- or "Shadows” (but with Local Laplacian Filter)

Fill Light &

Process: ‘e Tone Mapping

Photomatix “Details Enhancer”

Detail Contrast

Lighting Adjustments
&

@ Lighting Effects Mode

After a slide by Frédo Durand
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I HDR vs. Tone mapping vs. Developing

Tone mapping is not something new or unique to HDR

- dodge-burn, dark room development, RAW processing

Your camera does tone mapping even if you don’t do HDR
Film & digital SLRs have more dynamic range than display
- Enhance/preserve details, map larger range to smaller

HDR tone mapping and RAW processing (e.g. Lightroom
Develop module) are doing fundamentally similar things

CS 89/189: Computational Photography, Fall 2015 47
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“Abandoned Ship at Point Reyes” [Wojciech Jarosz 2014]


http://photoblog.wojciechjarosz.com/photo/613

TR

“Abandoned Ship at Point Reyes” h) f | | [Woijciech Jarosz 2014]


http://photoblog.wojciechjarosz.com/photo/613

I Up to a point

Noise gets amplified in the shadows

CS 89/189: Computational Photography, Fall 2015 50



Optimal Weights




I Problem setup

We may have multiple valid observations for a given pixel
They have different noise characteristics
How can we combine them optimally?

“ y Sl J
\‘ § “: “"ﬁ-‘-::*
B

After a slide by Frédo Durand
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} Simple cases

They have the same noise

- Just take the average: see assignment 3

- Noise reduced by sqrt(N)

If one is a lot more noisy?
- Probably tfocus on the other one

- But it we only use the less noisy one, we don’t get any noise
reduction

- There has to be a way to use the second one at least a little bit

After a slide by Frédo Durand
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¥ Simple case

Two observations x & y of the same quantity
“lz] o7yl

Compute estimate as ax + (1-a)y

- with given variances o“|z| o

What is the optimal a?

After a slide by Frédo Durand
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I Minimize variance

Variance of the combination:

o’lax + (1 — a)y] = a’o®[z] + (1 — a)?0?[y]

To minimize: set derivative to zero
2a0°[z] — 2(1 —a)o?ly] =0
a (o?[z] + o°[y]]) = o*[y]

oy
o?lr| + oyl

CS 89/189: Computational Photography, Fall 2015
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slide by Frédo Duran
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After a
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¥ Optimal combination

v : o]
o*lx] +ollyl]  oflr|+ oyl

re-arrange:

o 2|

Y

0" [z]o*[y] ,
0% |z] + Ozy[y] (021[93] o Jiyy>

normalization term

nd

The optimal combination should scale estimators
according to the inverse of their variance

slide by Frédo Dura

After a

CS 89/189: Computational Photography, Fall 2015
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) Verify for same variance

02[:1:]02 Y| 1 1
- X -
] + o] \ o]t o

CS 89/189: Computational Photography, Fall 2015
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} General formula

Weight each estimator by the inverse variance

After a slide by Frédo Durand
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Optimal HDR




I Recall: Assembling HDR (linear case)

Figure out scale factor between images
- from exposure data, or
- by looking at ratios li(x,y)/li(x,y) (only when both are good)

Compute weight map w; for each image

nd

- binary so far

Reconstruct full image using weighted combination

1 1
out(x,y) = S~ w1 (2.7 sz(CE, ?J)k—ifi(it, y)

slide by Frédo Dura

After a

CS 89/189: Computational Photography, Fall 2015
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I Pixel noise and variance

Recall: noise is characterized by its variance

- i.e. each pixel value comes from a true value plus some
noise addea

We can calibrate this noise by taking multiple
exposures, or we can derive variance equations using
pen and paper

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 6



} Sources of noise

Photon noise

- variance proportional to signal
- dominates for dark pixels

Read noise
- constant variance

- dominates for dark pixels

2[ 2

For a pixel value x: o%|z| ~ ax + o7,

2

 ead depend on the camera and ISO

- where a and o

After a slide by Frédo Durand
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I Optimal weights
Recall irradiance formula: li(x, y) = clip(ki+L(x,y)+n)

and HDR merging formula:
1

1
out(x,y) = S~ w1(2.7) sz(%y)k

()

Iz(mvy)

1/k amplities signal and noise:

nd

1 1 . _
é UQ[EL; ($, y)] — 1.2 _CLL; (CE, y) T U%ead_

: replace | by irradiance Z

E 1 1

{g 0-2[_Ii (f, y)] — _CLkiL(Qj, y) T J?ead_

k2

1

Ki



IVariance of one scaled image

T y)] = 1 a1 9) + 0%
Pt Tiw)] = 1 (R y) + 0
1 - Qa 1 \
02 k_Z[Z(x7 y> — ]f_ZL($7 y) + k@z Uzead

If we only look at photon noise, mostly proportional to scale factor
ldeally, should all be calibrated

After a slide by Frédo Durand

Note that we ignored ISO variations

CS 89/189: Computational Photography, Fall 2015



I Improved weight maps

. _ ] (LT
Old formula: out(x,y) = S~ 0 (2.7 sz(w,y) a Ii(x,y)
Variance per pixel per image: 02[%1}(“/)] ~ %L(a’;,y)

replace w; by w;’
- still use w; to reject dark and bright pixels

- but also weight by inverse variance

wi(,y) = wi(a,y)/ -~ L(z,y)

(/

After a slide by Frédo Durand
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I Improved weight maps
Zw v,y) .~ Ti(z, y)

New formula:

out(x,y)

with wi(x,y) = wz(ﬂ%y)/k_[/( ,y)

Which gives us out(z,y) =

()

SGar

- the two ki in the main sum cancel each other

1
S wi(z, y) g Z Wil ) at

-

After a slide by Frédo Durand

\_

out(x,y) =

szxy

szajy

Y)

~

J

CS 89/189: Computational Photography, Fall 2015

- a and L(x,y) are constant per pixel and present both in the
main sum and the normalization. Get rid of them.

66



I New formula

(" )

out(xz,y) = Zw ek sz x,y)Li(x,y)

\_ J

The radiant power reaching the pixel has disappeared. All pixels of a given
exposure are weighted the same.

This is because the relative photon noise changes similarly for all pixels
between a pair of exposures

- Would be different with read noise

ki has disappeared from the main sum. The images are not really rescaled to
scene radiant power

- But they indirectly are because of the normalization
- Recall that ki and 1/ki used to both appear

After a slide by Frédo Durand
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I References

http://www.macs.hw.ac.uk/bmvc2006/papers/372.pdft
http://people.csail.mit.edu/hasinoft/hdrnoise/

- full noise model l deal HOR sensor

‘ . 60r SNR-optimal
- eX p O It | S O 151(/)335%)%(,)1/125, 1/5) sec
40F

log scene brightness

2

- )

- . . =

> - Also optimizes the setof = \/ ;

O e e e e e
NO)

u; ex p OS u re S 0k | std. exposure bracketing @0 [t
0O - 1ISO 100

Q (1/100, 1/25, 1/6) sec

O

K% =201

(-U 1

CIL) -16 -14 -12 -10 -8 -6 -4 -2 0
J=

<
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HDR file formats




I Storing/Encoding HDR images

Most formats are lossless Float-point TIFF (.TIFF):
Portable float map (.PFM): - log encoded 24- or 32-bit values
- straight dump of 32-bit floating-point  OpenEXR (.EXR):
pixel values - by Industrial Light & Magic, also
- twrite(buftfer, 3 * sizeof(tloat), standard in graphics hardware
bufter.size(), 1), - 16- or 32-bit floating-point per channel
- quick and dirty, common in research - popular in movie industry, not as much
Radiance image (.PIC, .HDR): in photography
- 8 bits perr,g,b as usual, plus 8 bits of  Adobe Digital NeGative (.DNG)
shared exponent (rgbe) - Specific for RAW files, intended to
- Introduced by Greg Ward for Radiance avoid lock-in to undocumented,
(light simulation) oroprietary formats

CS 89/189: Computational Photography, Fall 2015 /1



§ HDR formats
Summary of all HDR encoding formats (Greg Ward):

- http://www.anyhere.com/gward/ndrenc/hdr_encodings.htm|

Greg’s notes:

- http://www.anyhere.com/gward/pickup/CIC13course.pdf
http://www.openexr.com/
High Dynamic Range Video Encoding (MPI)

- http://www.mpi-sb.mpg.de/resources/hdrvideo/

CS 89/189: Computational Photography, Fall 2015
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http://www.anyhere.com/gward/hdrenc/hdr_encodings.html
http://www.mpi-sb.mpg.de/resources/hdrvideo/
http://citeseer.ist.psu.edu/smith95susan.html

HDR photography
advice




] “Good” vs “Bad” HDR/tone mapping

CS 89/189: Computational Photography, Fall 2015

/4



. . ' : ; e e : - . vt P \ : N )
- rtare R a™ e N S T F@Q‘g i » N ,‘-h : "; S . AS
e R R e e e T Sl e *t‘r"a& = WP P
— ~a -4 e Bord - ,"'.- - - NN g - - -~ F = I-'O e ) ' _ > - .- ’ .

'\&’ ’.Qw-,.__}\"); - > o - L n* w _‘_,..' - » :‘ - ‘ “
. ' Mﬁ'i‘! .h' - 3 w o “‘ '.."V A% . ‘e - .. - . . e

- .. 5 - W e "F_‘ (e . L . ! E .

- p— R s : - >
- *-!.?MVQQW‘ » Vaas D T -‘ > w5 s
-
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http://tommyscapes.com/hdr-tip-02-less-is-more/

[Tommy Clark]



http://tommyscapes.com/hdr-tip-02-less-is-more/

] “Good” vs “Bad” HDR/tone mapping

Generally avoid:
- halos

- excessive noise
- black clouds

- HDR on people or out-of-focus regions
Not all images require HDR tone mapping!

My opinion: HDR tone mapping is like special effects, it's
better if you can't tell it's being used

CS 89/189: Computational Photography, Fall 2015
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I How to take your own HDR photos

CS 89/189: Computational Photography, Fall 2015
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I Keep in mind...

HDR + tone mapping/processing won’'t make a boring
photo interesting

Do as much as possible “in-camera”
Learn composition (rule of thirds, line, form, texture, etc)

Shoot in the right light

- golden hour

CS 89/189: Computational Photography, Fall 2015
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“Kiliclar Valley” i 2% A B 1% #/;*' 4 v ‘_,,9 Y R B 3 ‘[Wojciech Jarosz 2012]


http://photoblog.wojciechjarosz.com/photo/553

“Kiliclar Valley” [Wojciech Jarosz 2012]



http://photoblog.wojciechjarosz.com/photo/553

d Use the histogram

Normal

Overexposed

Underexposed Well Exposed

Underexposed

*’mump i b

CS 89/189: Computational Photography, Fall 2015

Overexposed

82



IWhat’s happening in this photo?

X
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>
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http://www.flickr.com/photos/neofob/107794678/

I Polarizing Filter

CS 89/189: Computational Photography, Fall 2015
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Polarization

.;“ ' ‘.
. -t
g » .,’
. . e

With Polarizing Filter

CS 89/189: Computational Photography, Fall 2015

source: photography.ca
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http://www.photography.ca/blog/2008/09/29/polarizing-filters-reduce-reflections/

I Polarization

Without P

olarizer With Polarizing Filter

CS 89/189: Computational Photography, Fall 2015

source: wikipedia

S

86


http://en.wikipedia.org/wiki/File:CircularPolarizer.jpg

I Effect of Polarization

[Wojciech Jarosz]

87/



I Effect of Polarization

[Wojciech Jarosz]

83



I Exposure Bracketing

| typically:
- Use aperture for desired depth of field

- Use lowest possible ISO (reduce noise)
- Control exposure with shutter speed

- Use a tripod and a remote trigger (mirror lock-up)

CS 89/189: Computational Photography, Fall 2015
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[Wojciech Jarosz 2012]



http://photoblog.wojciechjarosz.com/photo/575

Rreasi=)

"Lake Bled” Jarosz 2012]


http://photoblog.wojciechjarosz.com/photo/575

“La Jolla Hospitals Reef” RV [Woijciech Jarosz 201 3]


http://photoblog.wojciechjarosz.com/photo/608

NS

“La Jolla Hospitals Reef” [Wojciech Jarosz 2013]


http://photoblog.wojciechjarosz.com/photo/608
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I Recap

High dynamic range (HDR) imaging is useful, and a new aesthetic
- butis not necessary in all photographic situations

Low dynamic range (LDR) tone mapping methods can also be
applied to HDR scenes

- but reducing very HDR scenes to 8 bits for JPEG using only global
methods is hard

Local methods reduce large-scale luminance changes (across the
image) while preserving local contrast (across edges)

- use edge-preserving filters to avoid halos

After a slide by Marc Levoy
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HDR practice




I Slide credits

Frédo Durand

Marc Levoy

CS 89/189: Computational Photography, Fall 2015
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